Non-monotonic Disclosure in Policy Advice

Anna Denisenko (University of Chicago), Catherine Hafer (NYU), and Dimitri Landa (NYU)

SPSA - 2025

Non-monotonic Disclosure in Policy Advice

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information → full disclosure (Milgrom, 1981, Grossman, 1981)

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information \rightarrow full disclosure (Milgrom, 1981, Grossman, 1981)
- \rightarrow When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information \rightarrow full disclosure (Milgrom, 1981, Grossman, 1981)
- \rightarrow When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete
- Higher preference misalignment
 - \rightarrow less informative communication between receivers and senders / Policymakers and Bureaucratic Agencies (borne out in the classic cheap-talk models)

Substantive setting of special interest: strategic communications between policymakers and bureaucratic agencies

- Policymaker-bureaucrats communications often occur under verifiable information
 - both highly and weakly institutionalized
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term volatility than policymakers
 - preference misalignment under verifiable information \rightarrow full disclosure (Milgrom, 1981, Grossman, 1981)
- \rightarrow When sender's most-preferred action is close to the expected value of the state, unraveling **can** stop before being complete
- Higher preference misalignment
 - \rightarrow less informative communication between receivers and senders / Policymakers and Bureaucratic Agencies (borne out in the classic cheap-talk models)

ightarrow Higher degree of preference misalignment can lead to more informative communication

Related Literature

- Full disclosure in games of verifiable advice:
 - seminal papers by Milgrom (1981), Grossman (1981)
 - sender's preferences more state-dependent than receiver's Seidmann and Winter (1997)
 - for review see Milgrom (2008)
- Partial disclosure in games of verifiable advice
 - uninformed sender Dye (1985), Jung and Kwon (1988)
 - uncertainty about sender's preferences Wolinsky (2003), Dziuda (2011)
 - multidimensional advice Callander, Lambert and Matouschek (2021)
- Games of communication within hierarchy (cheap talk)
 - divergence in preferences \rightarrow worse communication: seminal paper by Crawford and Sobel (1982), Gilligan and Kreihbiel (1987), Austen-Smith (1990, 1993)
 - except Callander (2008)

Road Map

Introduction

2 Model

- Game Structure
- Equilibrium Characterization
- Effects of Agency's Policy Preferences
- Belief-Stable Equilibria
- ③ Generalization
- ④ Summary

There are two strategic players: the Agency (it) and the Policymaker (she).

(1) Nature determines the state of the world (ω) $\mid \omega \sim U[-1,1]$

\bigcirc	Nature determines the state of the world (ω)	$\omega \sim U[-1,1]$
2	The Agency observes the state (ω)	ω

\bigcirc	Nature determines the state of the world (ω)	$\omega \sim U[-1,1]$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$m(\omega) \in \{\omega, \varnothing\}$

\bigcirc	Nature determines the state of the world (ω)	$\omega \sim U[-1,1]$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$\textit{\textit{m}}(\omega) \in \{\omega, \varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p(m) \in \mathbb{R}$

Payoffs and Solution Concept

• Agency:

$$u_A(p) = -(p-i)^2$$

Payoffs and Solution Concept

• Agency:

$$u_A(p)=-(p-i)^2,$$

we assume $i \ge 0$.

Payoffs and Solution Concept

• Agency:

$$u_A(p)=-(p-i)^2,$$

we assume $i \ge 0$.

• Policymaker:

$$u_P(p) = -(p-\omega)^2.$$

Solution Concept: Sequential Equilibrium.

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Belief-Stable Equilibria
- ③ Generalization
- ④ Summary

Equilibrium Characterization

When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega|m = \emptyset; m^*(\omega)].$

Equilibrium Characterization

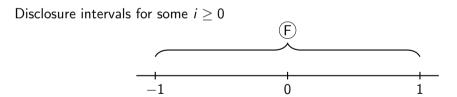
When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega|m = \emptyset; m^*(\omega)].$

The Agency discloses the state when $E[u_A(p^*(m))|m = \omega] > E[u_A(p^*(m))|m = \omega] \Rightarrow$

Equilibrium Characterization

When Policymaker observes $m \neq \emptyset$, she implements $p^*(m = \omega) = \omega$.

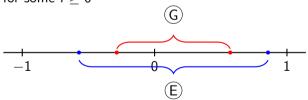

Otherwise, the Policymaker chooses $p^*(\emptyset) = x^* \equiv E[\omega|m = \emptyset; m^*(\omega)].$

The Agency discloses the state when $E[u_A(p^*(m))|m = \omega] > E[u_A(p^*(m))|m = \omega]$ \Rightarrow The Agency discloses states when

 $\omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1]$ and conceals otherwise.

Equilibrium Outcomes

There can be a *maximum* of three disclosure strategies supported in equilibrium **•** Full disclosure strategy;

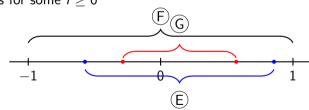


Equilibrium Outcomes

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure strategy (F)
- ② Partial disclosure strategy:
 - Guarded disclosure (G);
 - Expansive disclosure (E).

Disclosure intervals for some $i \ge 0$

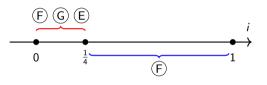


Equilibrium Outcomes

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure strategy;
- ② Partial disclosure strategy:
 - Guarded disclosure;
 - Expansive disclosure.

Disclosure intervals for some $i \ge 0$


Road Map

- Introduction
- ② Example
- ③ Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preferences
 - Belief-Stable Equilibria
- ④ Generalization
- Summary

Effects of A's Policy Preference (i) on Equilibria

Prop.1.

- If i ∈ [0, 1/4], there are three equilibria: full disclosure, guarded disclosure, and expansive disclosure;
- 2 If i > 1/4, there is a unique equilibrium full disclosure equilibrium.

The Agency discloses state ω to the Policymaker when

 $\omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1],$

and conceals information otherwise.

The Agency discloses state ω to the Policymaker when

 $\omega \in [x^*, 2 \cdot \mathbf{i} - x^*] \cap [-1, 1],$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct

The Agency discloses state ω to the Policymaker when

 $\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

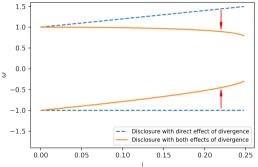
The Agency discloses state ω to the Policymaker when

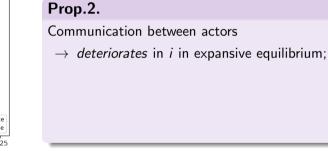
 $\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$

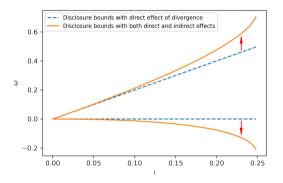
and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

- Direct effect always (*weakly*) improves communication between the Agency and the Policymaker
- Indirect effect
 - $\rightarrow\,$ Improves communication in the guarded equilibrium

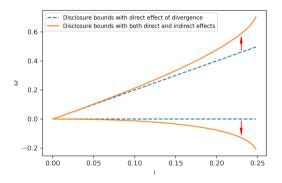

The Agency discloses state ω to the Policymaker when


 $\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$


and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

- Direct effect always (*weakly*) improves communication between the Agency and the Policymaker
- Indirect effect
 - $\rightarrow\,$ Improves communication in the guarded equilibrium



Prop.2.

Communication between actors

- \rightarrow deteriorate in *i* in expansive equilibrium;
- \rightarrow *improves* in *i* in guarded equilibrium;

Prop.2.

Communication between actors

- \rightarrow deteriorate in *i* in expansive equilibrium;
- \rightarrow *improves* in *i* in guarded equilibrium;
- \rightarrow not affected by *i* in the equilibrium with full disclosure.

Parameter *i* measures A's policy preference. Parameter *i* also represent **ex-ante** divergence between actors' preferences.

Prop.2.

Communication between actors

- \rightarrow *deteriorate* in *i* in expansive equilibrium;
- \rightarrow *improves* in *i* in guarded equilibrium;
- \rightarrow not affected by *i* in the equilibrium with full disclosure.

Effect of A's Policy Preference (i) on Equilibrium Disclosure

Parameter *i* measures A's policy preference. Parameter *i* also represent **ex-ante** divergence between actors' preferences.

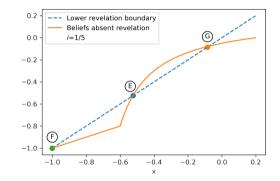
Prop.2.

Communication between actors

- → deteriorate in preferences divergence in expansive equilibrium;
- → improves in preferences divergence in guarded equilibrium;
- \rightarrow not affected by preferences divergence in the equilibrium with full disclosure.

Road Map

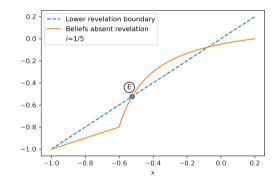
Introduction

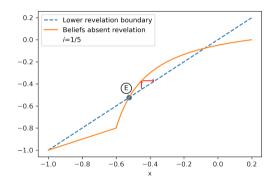

2 Model

- Game Structure
- Equilibrium Characterization
- Effects of Agency's Policy Preferences
- Belief-Stable Equilibria
- ③ Generalization
- ④ Summary

When $i \ge 0$, the lower bound of the Agency's disclosure must coincide with Policymaker's belief about state absent disclosure.

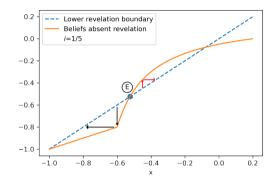
Three disclosure strs that can be supported in equilibrium:


- Full disclosure;
- Guarded disclosure;
- 3 Expansive disclosure.

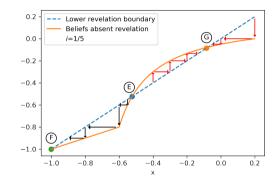

When $i \ge 0$, the lower bound of the Agency's disclosure must coincide with Policymaker's belief about state absent disclosure.

Three disclosure strs that can be supported in equilibrium:

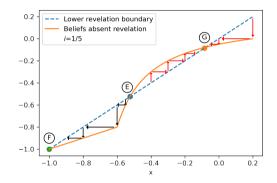
- Full disclosure;
- Guarded disclosure;
- **3** Expansive disclosure.



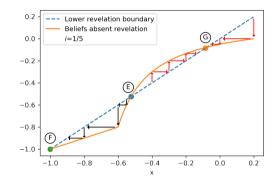
Imagine, there is slight perturbation to the Policymaker's beliefs in **expansive** equilibrium.


Imagine, there is slight perturbation to the Policymaker's beliefs in **expansive** equilibrium.

Regardless of the direction of perturbation, this equilibrium will 'collapse.'


Def.1

Consider a sequential equilibrium (σ, μ) and a perturbed system of beliefs μ_i^{ε} . Let σ^{ε} be sequentially rational given the beliefs $(\mu_i^{\varepsilon}, \mu_{-i})$, and let $\hat{\mu}_i^{\varepsilon}$ be consistent with σ^{ε} . If there exists an $\varepsilon > 0$ such that, for every μ_i^{ε} that satisfies $|\mu_i^{\varepsilon}(x) - \mu_i(x)| < \varepsilon$, condition $|\hat{\mu}_i^{\varepsilon}(x) - \mu_i(x)| \leq |\mu_i^{\varepsilon}(x) - \mu_i(x)|$ is satisfied for all decision nodes x assigned to *i*, then we say that equilibrium (σ, μ) is belief-stable for player i. If equilibrium (σ, μ) is belief-stable for every player *i*, then we say it is belief-stable.


Def.1

An equilibrium (σ, μ) is **belief-stable** for player *i* if small perturbations in *i*'s beliefs (μ_i^{ε}) lead to consistent updates $(\hat{\mu}_i^{\varepsilon})$ that are closer to the original beliefs (μ_i) , for all decision nodes assigned to *i*. If this holds for every player, the equilibrium is **belief-stable**.

Prop.3.

- Full disclosure is belief-stable when i > 0;
- Guarded equilibrium is always belief-stable;
- 3 Expansive equilibrium is never belief-stable.

Road Map

Introduction

- 2 Model
- ③ Summary

- Discrete Example
- Disclosure Reward
- Generalization
- Policymaker's bias
- Optimal Choice of Agency
- Perturbations to Agency's policy preferences **TBA**

Summary

A model of verifiable communication between a Policymaker and a Bureaucratic Agency

- When Sender's optimal policy is close to the mean of the distribution, unraveling can stop before being complete;
- Higher ex-ante preference divergences can encourages the Agency to disclose more information;
- 3 Equilibria where communication deteriorate in preference divergence are not belief-stable.

Thank you!

Road Map

- Introduction
- 2 Model
- ③ Generalization
- ④ Summary

General Model: Actors and Timing

There are two strategic players: the Agency (it) and the Policymaker (she).

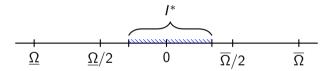
	Nature determines the state of the world $(\omega \in [\underline{\Omega},\overline{\Omega}])$	$\omega \sim F(\cdot)$ such that $\int_{\overline{\Omega}}^{\overline{\Omega}} x \cdot f(x) dx = 0$
2	The Agency observes the state $\boldsymbol{\omega}$	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$m \in \{\omega, \varnothing\}$
4	The Policymaker observes message (m) and chooses policy $(p(\omega))$ to implement	$p \in \mathbb{R}$
		\downarrow

Т

General Model: Characterization

Prop. In all sequential equilibria in this game

$$p^* = \begin{cases} m \text{ if } m \neq \varnothing, \\ x^* \text{ if } m = \varnothing \end{cases} ; m^* = \begin{cases} m = \omega \text{ if } \omega \in [i - \sqrt{(i - x^*)^2}, i + \sqrt{(i - x^*)^2}], \\ m = \varnothing \quad \text{else}, \end{cases}$$


where $x^* \equiv E[\omega|m=arnothing,m^*].$

Full Disclosure: Uniqueness

Prop. There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full-disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

Full Disclosure: Uniqueness

Prop. There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full-disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

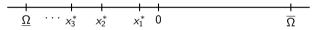
*stylized image

Multiple Equilibria

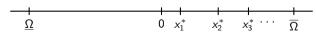
Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:

$$X^* \equiv \{x^* : x^* = E[\omega | m = \emptyset, m^*]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, ...\}$.


Multiple Equilibria

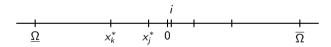
Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:


$$X^* \equiv \{x^* : x^* = E[\omega | m = \emptyset, m^*]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, ...\}$.

Stylized image for some $i \ge 0$:

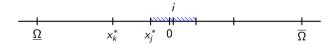
Stylized image for some $i \leq 0$:


Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

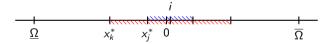
Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \; [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}]$$


Stylized image for some $i \ge 0, k > j$:

Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \; [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}]$$


Stylized image for some $i \ge 0, k > j$:

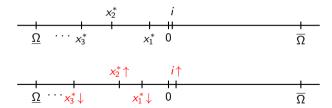
Prop. All equilibrium disclosure intervals are nested:

$$\forall k > j, \; [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}]$$

Stylized image for some $i \ge 0, k > j$:

Multiple Equilibria: Comparative Statics

Prop. For all *j*, equilibrium policy selected absent disclosure x_i^*


- **(1)** weakly decreases in *i* when $j = 2 \cdot k 1 : k \in \mathbf{N}$,
- ② weakly increases in *i* when $j = 2 \cdot k : k \in \mathbf{N}$.

Multiple Equilibria: Comparative Statics

Prop. For all j, equilibrium policy selected absent disclosure x_i^*

- **1** weakly decreases in *i* when $j = 2 \cdot k 1 : k \in \mathbf{N}$,
- ② weakly increases in *i* when $j = 2 \cdot k : k \in \mathbf{N}$.

Stylized image for some $i \ge 0$:

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

The Agency is disclosing state to the Policymaker when

$$\omega \in [i - \sqrt{(i - x^*)^2}, i + \sqrt{(i - x^*)^2}] \cap [-1, 1],$$

and conceals information otherwise.

The departure of the Agency's preferences from zero has direct and indirect effects on disclosure.

• Direct effect always (*weakly*) improves communication between the Agency and the Policymaker

Indirect effect

- → Improves communication in equilibria with **odd-indexed** policies absent disclosure
- $\rightarrow\,$ Reduces communication in equilibria with $even-indexed\,$ policies absent disclosure

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

Prop. The Agency's equilibrium disclosure

- (1) increases in divergence between the Agency's and the Policymaker's ex ante ideal points, |i|, in equilibria with odd-indexed policies absent disclosure;
- 2 decreases in divergence between the Agency's and the Policymaker's ex ante ideal points, |i|, in equilibria with even-indexed policies absent disclosure.

General Model: Belief Stability

Prop. Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

General Model: Belief Stability

Prop. Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

 \Rightarrow **Corrolary.** Equilibria are belief-stable \Leftrightarrow equilibrium communication **improves** in preference divergence. Equilibria are not belief-stable \Leftrightarrow equilibrium communication **worsens** in preference divergence.

There are two strategic players: the Agency (it) and the Policymaker (she).

There are two strategic players: the Agency (it) and the Policymaker (she).

Nature determines the state of the world (ω), all states equally likely $\omega \in \{-A, -B, 0, B, A\}$

There are two strategic players: the Agency (it) and the Policymaker (she).

\bigcirc	Nature determines the state of the world (ω), all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω

There are two strategic players: the Agency (it) and the Policymaker (she).

	Nature determines the state of the world (ω), all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$\textit{\textit{m}}(\omega) \in \{\omega, \varnothing\}$

There are two strategic players: the Agency (it) and the Policymaker (she).

	Nature determines the state of the world (ω), all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$\textit{\textit{m}}(\omega) \in \{\omega, \varnothing\}$
4	The Policymaker observes message (<i>m</i>) and chooses policy (<i>p</i>) to implement	$p(m) \in \mathbb{R}$

Back to Road Map

Example: Payoffs and Solution Concept

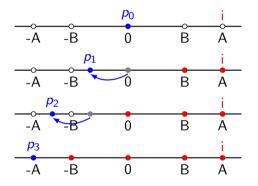
• Agency:

$$u_A(p)=-(p-i)^2.$$

Example: Payoffs and Solution Concept

• Agency:

$$u_A(p)=-(p-i)^2.$$


• Policymaker:

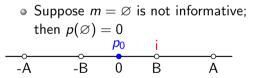
$$u_P(p) = -(p-\omega)^2.$$

Solution Concept: Sequential Equilibrium. Back to Road Map

Revelation Dynamics: Full Disclosure

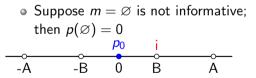
- Let i = A
- The only equilibrium is one with full revelation

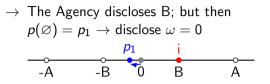
• Let
$$i = B$$
, $i \leq 3 \cdot A/7$


• When Policymaker observes $m = \omega$

 $p = \omega$

• Let
$$i = B$$
, $i \leq 3 \cdot A/7$

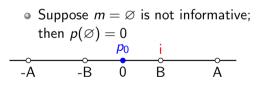

• When Policymaker observes $m = \omega$


 $p = \omega$

- Let i = B, $i \leq 3 \cdot A/7$
- When Policymaker observes $m = \omega$

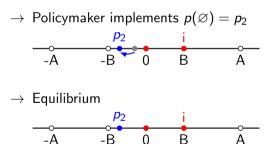
 $p = \omega$

- Let i = B, $i \leq 3 \cdot A/7$
- When Policymaker observes $m = \omega$


 $p = \omega$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$ -A -B 0 B A

- $\rightarrow \text{ Policymaker implements } p(\emptyset) = p_2$ $\xrightarrow{p_2 \quad \text{i}}_{-A \quad -B \quad 0 \quad B \quad A}$


- Let i = B, $i \leq 3 \cdot A/7$
- When Policymaker observes $m = \omega$

 $p = \omega$

Back to Road Map

→ The Agency discloses B; but then $p(\emptyset) = p_1 \rightarrow \text{disclose } \omega = 0$ $\hline -A -B 0 B A$

Introducing Disclosure Reward, R

The Agency receives a lump sum gain R when it shares information

$$u_A(p) = \begin{cases} -(p-i)^2 + R, & m \neq \emptyset; \\ -(x-i)^2, & m = \emptyset. \end{cases}$$

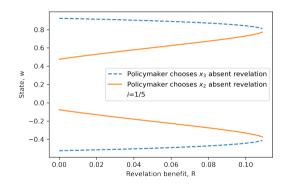
Model with Reward: Equilibrium Characterization

The Policymaker implements $p^*(m) = m$, when she observes $m = \omega$.

She chooses a policy x^* otherwise.

The Agency discloses the state ω when $\omega \in [i - \sqrt{(i-x)^2 + R}, i + \sqrt{(i-x)^2 + R}]$, and conceals information otherwise.

Model with Reward: Effects on Communication


Lemma. Holding fixed Policymaker's choice absent disclosure, informativeness of communication between actors improves in *R*.

Model with Reward: Effects on Communication

Lemma. Holding fixed Policymaker's choice absent disclosure, informativeness of communication between actors improves in *R*.

Proposition. Communication

- improves in *R* in guarded equilibrium;
- deteriorates in *R* in expansive equilibrium;

Introducing Policymaker's Bias, b

The Policymaker wishes to implement policies co-aligned with her bias b

$$u_P(p) = -(p-\omega-b)^2,$$

we assume b > 0.

Model with Policymaker's bias: Equilibrium Characterization

The Policymaker implements $p^*(m) = m + b$, when she observes $m \neq \emptyset$. She chooses a policy $E[\omega|m = \emptyset] + b$ otherwise.

The Agency discloses the state $\boldsymbol{\omega}$ when

$$\omega \in egin{cases} [2 \cdot (i-b) - x, x] \cap [-1, 1], \ i-b < 0; \ [x, 2 \cdot (i-b) - x] \cap [-1, 1], \ i-b > 0, \end{cases}$$

and conceals information otherwise.

Model with Policymaker's bias: Equilibria

There can be a maximum of three equilibrium outcomes in this game

- Full disclosure;
- 2 Partial disclosure:
 - Guarded disclosure strategy;
 - *Expansive* disclosure strategy.

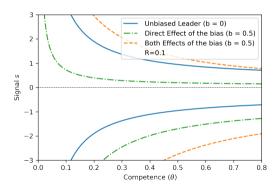
Model with Policymaker's bias: Comparative Statics

Communication between actors

- (1) is not affected by the Policymaker's bias in fully revealing equilibrium;
- improves as Policymaker's bias departs from the Agency's ideal point in guarded equilibrium;
- 3 deteriorate as Policymaker's bias departs from the Agency's ideal point in expansive equilibrium.

Model with Policymaker's bias: Belief Stability

- Fully revealing equilibrium is belief stable when the Policymaker's bias is different from the Agency's ideal point and not belief stable otherwise;
- Q Guarded equilibrium is always belief stable;
- 3 Expansive equilibrium is never belief stable.


Agency's Competence: Game Modification

Companion paper: DHL 2024

\bigcirc	Nature determines the state of the world (ω)	$\omega \sim \textit{N}(0,1)$
2	The Agency of known competence (θ) observes private signal (s) about the state	$egin{aligned} oldsymbol{s} &= \omega + arepsilon, \ arepsilon &\sim oldsymbol{N}(0, 1/oldsymbol{ heta}) \end{aligned}$
3	The Agency chooses which message (<i>m</i>) to send to the Policymaker	$m \in \{s, \varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p \in \mathbb{R}$

Agency's Competence: Agency's Disclosure Strategy

Policymaker implements policy $p=rac{m}{1+1/ heta},$ when observes informative message m. Agency of competence θ discloses its signal to the Policymaker if and only if $s\geq -rac{\sqrt{R+d}\cdot(1+ heta)}{ heta}-b,$ and $s \leq rac{\sqrt{R+d} \cdot (1+ heta)}{ heta} - b.$

Sequential Rationality of Reward Scheme

Assume the Policymaker can choose whether to award R to the Agency.

- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker never awards less than *R* for disclosure;
- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker always awards disclosure and never awards lack thereof.

PM's Choice of the Agency

- Why pursue conformity?
 - Cheap-talk literature (seminal paper by Crawford and Sobel, 1982): more divergence → less communication;
 - "Ally principal" (see Bendor and Meirowitz, 2004): more divergence \rightarrow less delegation.
- Why avoid conformity?
 - Incentives to acquire information (Che and Kartik, 2009);
 - Incentives to acquire expertise (Gailmard and Patty, 2007);
 - Incentives to exert effort (Prendergast, 2007).

This paper's contribution: preference divergence guarantee full-disclosure uniqueness.

			N111181111111	
			1 1 1	
Ω	$\Omega/2$	0	$\overline{\Omega}/2$	\overline{O}
	<u></u> /		32/2	77

In shaded areas of the stylized image, full disclosure is the unique equilibrium.

PM's Choice of the Agency

- Why pursue conformity?
 - Cheap-talk literature (seminal paper by Crawford and Sobel, 1982): more divergence → less communication;
 - "Ally principal" (see Bendor and Meirowitz, 2004): more divergence \rightarrow less delegation.
- Why avoid conformity?
 - Incentives to acquire information (Che and Kartik, 2009);
 - Incentives to acquire expertise (Gailmard and Patty, 2007);
 - Incentives to exert effort (Prendergast, 2007).

This paper's contribution: preference divergence guarantee full-disclosure uniqueness.

			A	v
			1	
Ω	$\underline{\Omega}/2$	0	$\overline{\Omega}/2$	$\overline{\Omega}$

In shaded areas of the stylized image, full disclosure is the unique equilibrium.

Further, PM's utility is **weakly increasing** in the preference divergence in all belief-stable equilibria; It depends on preference divergence **non-monotonically** only in not belief-stable equilibria.